

PROTOTYPE FOR META-ALGORITHMIC, CONTENT-AWARE
IMAGE ANALYSIS

UNIVERSITY OF VIRGINIA

MARCH 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-055

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2015-055 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /
ERIC C. JONES MICHAEL J. WESSING
Work Unit Manager Deputy Chief, Information Intelligence
 Systems & Analysis Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2015
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

JUN 2012 – SEP 2014
4. TITLE AND SUBTITLE

PROTOTYPE FOR META-ALGORITHMIC, CONTENT-AWARE IMAGE
ANALYSIS

5a. CONTRACT NUMBER
FA8750-12-C-0181

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62305E

6. AUTHOR(S)

S. Acton, K. Skadron, S. Ozer, R. Sarkar, D. Newell

5d. PROJECT NUMBER
VMRG

5e. TASK NUMBER
00

5f. WORK UNIT NUMBER
08

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Rector & Visitors of the University of Virginia
University of Virginia
1001 N Emmet St
Charlottesville VA 22903-4833

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIEA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2015-055
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2015-1026
Date Cleared: 12 MAR 2015
13. SUPPLEMENTARY NOTES
14. ABSTRACT
Report developed under the Defense Advanced Research Projects Agency (DARPA) Visual Media Reasoning (VMR)
program. In this effort, several techniques were evaluated, including image segmentation and classification, and feature
(algorithm) ranking, within a Content-Based Image Retrieval (CBIR) framework. The effort also examined CBIR
performance in object recognition and classification. In this context, automated segmentation algorithms were
developed, in particular of active contour-based segmentation techniques, and applied to the extraction of specific
objects including weapons, humans, and planes. Self-nomination is the process by which an algorithm (feature-types),
"optimal" for a given specific object type, is selected within a pool of available ones. The selection process is carried out
by assigning higher weights based on the level of performance of each algorithm. In this effort, two approaches were
proposed: the first was based on dictionary learning whereas the second used a multiple kernel learning technique. Both
approaches were studied in detail and their results on a sample dataset are presented.
15. SUBJECT TERMS

Image Analysis, Computer Vision, Content-Based Image Retrieval (CBIR)

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
ERIC C. JONES

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

56

TABLE OF CONTENTS

LIST OF FIGURES ..iii
LIST OF TABLES ... iv
1 SUMMARY ... 1
2 INTRODUCTION ... 2
3 METHODS, ASSUMPTIONS, AND PROCEDURES .. 4

3.1 Segmentation techniques ... 4
3.2 Features .. 5
3.3 Compact feature representation ... 6
3.4 Classifiers ... 8
3.5 Data sets ... 11
3.6 Assumptions ... 12

4 RESULTS AND DISCUSSION .. 13
4.1 Segmentation and User Interface (sec. 4.1 from contract) 13

4.1.1 Develop and implement a VMR approach that applies segmentation and
classification in order to identify which subsequent object recognition
algorithms to use .. 13
4.1.2 Develop working software including plug-and-play interfaces 13
4.1.3 Demonstrate a VMR approach that applies segmentation and
classification. Document algorithm, software, and results of demonstration 13
4.1.4 CBIR as an Ingredient in Recognition (sec. 4.2 from contract) 17
4.1.5 Develop and implement software to identify faces via a generalized CBIR
method .. 18
4.1.6 The value of CBIR as an ingredient in classification 19
4.1.7 Documentation and results .. 19

4.2 Automatic Building Recognition (sec. 4.3 from contract) 26
4.2.1 Techniques for building recognition .. 26
4.2.2 Documentation, Results and Assessment of the presented techniques on
building recognition .. 27

4.3 CBIR as a “backstop” algorithm for recognition (sec. 4.4 from contract) 28
4.4 Viability of Self-nomination (sec. 4.5 from contract) ... 29

i

4.4.1 Investigate and develop methodology for a “self-nomination” paradigm
in which a large pool of algorithms self-score their suitability and implement in
software. .. 30
4.4.2 Assessment of the developed methodologies ... 33

5 CONCLUSIONS ... 39
5.1 A Conclusive discussion and conclusion on Experiments 4 and 5 39
5.2 A Conclusive discussion and conclusion on Experiment 6 39

6 REFERENCES .. 41
APPENDIX ... 45

A.1 Documentation ... 45
A.2 Integrated System (sec. 4.6 from contract) ... 47
A.2.1 Assembled software system .. 47

A.2.2 Assess the integrated software system .. 47
A.2.3 Documentation ... 47

A.3 Reports (sec. 4.7 from contract) .. 47
A.3.1 Progress towards accomplishment .. 47
A.3.2 Continually determine the status of funding .. 48
A.3.3 Conduct presentations at such times and places designated in the contract
schedule. .. 48
A.3.4 Document all technical work accomplished and information gained. 48
A.3.5 Collaboration .. 49

A.4 Software (sec. 4.8 from contract) .. 49
A.4.1 User’s Guide ... 49

ii

LIST OF FIGURES

Figure 1: Flow of process creating the BoW histogram. .. 7
Figure 2: Spatial pyramid computation for a sample image. (a) shows how an image is divided into sub-
regions and the feature histogram for each of the sub-region is computed. (b) The histograms computed
in (a) is then concatenated to form one single histogram which now serves as the feature of the image. 8
Figure 3: Segmentation results using the different segmentation algorithms. (a) Shows results of active
contour model with image intensity driven external force field and automated initialization by Poisson
inverse gradient, (b) shows segmentation results for image intensity and texture driven external force
field with PIG based automated initialization. (c) Shows segmentation results using area morphological
operators.. 15
Figure 4: The GUI developed to compare the different automated segmentation algorithms. The GUI has
the option to select the algorithms and also the image to segment. The left hand panel displays the
image selected and the right panel displays the image with the segments. .. 16
Figure 5: Shows a sample screen of the designed user interface. The method to be used can be selected
from the drop down button. An option to select the query image is present and the query image is shown
at the bottom left hand corner. On the right the retrieved images are shown in order of the best possible
match. The ‘previous and next’ buttons are used to scroll through the pages to view the next set of
retrieved images. .. 17
Figure 6: This figure illustrates how the performance of the SVM classifier changes with respect to the
change in the kernel parameter. Performance drops drastically, as the value of the chosen Gaussian
kernel parameter increases. ... 19
Figure 7: Sample images for each category from the dataset used in experiments 1 and 2. 22
Figure 8: Sample images from each category are shown from the used data set [13]. Each image is
down-sampled and resized to fit into the figure. ... 24
Figure 9: Comparisons of the area under the precision .. 25
Figure 10: A building image and the detected L and U junctions are shown in the image. The right most
image shows a zoomed in portion of a building displaying the L-U junctions. .. 28
Figure 11: Use case scenario for CBIR as a backstop algorithm for recognition. ... 29
Figure 12: Self-nomination in VMR. .. 29
Figure 13: Detailed use case scenario for mutual information based feature nomination method. 32
Figure 14: Sample images from Caltech 101 dataset ... 36
Figure 15: The figure shows the confusion matrix (the diagonal entries show the classification accuracy
when a test image from the classes along the row is classified correctly) for 16 sample classes which
have classification accuracy over 80% using the feature the feature nomination scheme. 37
Figure 16: Figure shows the classification accuracies using SIFT (S), HOG (H), LBP (L), HSV color
histogram (C) and mutual information based self-nomination (SN) algorithm. We also show comparison
when a weighted combination of the features used is taken using the same dictionary learning based
classifier. .. 38

iii

LIST OF TABLES

Table 1: Area under the curve (AUC) values computed from precision and recall values for the 20-200
dataset where K=256. ... 23
Table 2: CBIR results over 20 classes are presented. The CBIR system is tested for various combinations
of SIFT (S), HOG (H) and color histograms (C). The average area under the curve values (AUC) are listed
under each feature combination .. 23
Table 3: Area under the curve (AUC) values computed from precision and recall values for the 20-200
dataset where K=1000.. 24
Table 4: CBIR results over 20 classes are presented. The CBIR system is tested for various combinations
of SIFT (S), HOG (H) and color histograms (C). The average area under the curve values (AUC) are listed
under each feature combination. ... 24
Table 5: CBIR results over 30 classes are presented. The CBIR system is tested for various combinations
of SIFT (S), HOG (H) and color histograms (C). The average area under the curve values (AUC) are listed
under each feature combination. ... 25
Table 6: Kernel weights (βm, m=1,2,3) are shown for each category when the MKL is trained by using all
three feature-types. .. 34
Table 7: The classifier is trained by using Color (RGB) histograms and SIFT features. 35
Table 8: The classifier is trained by using Color (RGB) histograms and HOG features..................................... 35
Table 9: The classifier is trained by using SIFT and HOG features. .. 35
Table 10: The classifier is trained by using all three feature-types. ... 35

iv

1 SUMMARY

In this work we study evaluate several techniques, including image segmentation and

classification, and feature (algorithm) ranking within the content-based image retrieval

(CBIR) framework to evaluate the CBIR performance in object recognition and

classification. A recent survey of CBIR techniques can be found in [1].

We also analyze the performance of various segmentation algorithms, in particular of

active contour-based segmentation techniques, when applied to the extraction of specific

object including weapons, humans, and planes.

Self-nomination is the process by which an algorithm and feature-types, “optimal” for a

given specific object type, are selected within a pool of available ones. The selection

process is carried out by assigning higher weights based on the level of performance of

each algorithm. In this work we proposed two approaches: the first is based on dictionary

learning whereas the second uses a multiple kernel learning technique. Both approaches

are studied in details and their results on a sample dataset are presented.

Approved for Public Release; Distribution Unlimited.
1

2 INTRODUCTION

Recent efforts in learning from image data sets include selecting the salient features and

combining them for the purpose of content-based image retrieval [1], [2], [3]. In such

approaches a set (pool) of feature-types is first selected manually and then a specific

technique is applied to choose the most salient (individual) features from each feature-

types in the set. Once the salient features are selected, they are combined and used in the

retrieval process via a classifier. Two important questions, that still remain unanswered

by these approaches, are: “which feature-types do we need to compute for retrieving a

specific object type?” and “is one feature-type sufficient and generic enough to retrieve

images accurately from each object class?” In this report we present a technique that

answer these questions that are related to how well a feature-type can discriminate

between different object categories.

In the last three decades, numerous techniques have been proposed to localize and

summarize the salient features of an image. Recent examples include the scale-invariant

feature transform (SIFT) [4], dense-SIFT [5], histograms of oriented gradients (HOG)

[6], Gabor features [7], D-nets [8] and local symmetry features [9]. Different studies have

proposed different combinations of feature-types to gain higher accuracies. For example

in [10] a combination of HOG and local binary patterns is used to increase the detection

of humans as opposed to using exclusively HOG features whereas in [11] is reported that

a combination of SIFT, HOG and color information yields an increased accuracy in

flower classification respect to the use of each feature-type individually.

These examples illustrate that different feature-types will perform optimally on

different class of objects and that the choice of the salient feature-type, or combination

there of, becomes critical. The automatic selection of the salient feature-types for a

specific category not only helps increasing the accuracy, as opposed to using single

feature-type, but also reduces the computational and storage requirements since, in many

cases, before selecting individual features, all the features for each feature-type need to

be computed and stored.

This report presents a prototype self-nomination approach that, for each category, can

select the most salient feature-types from a given pool of feature-types. In particular we

propose two different approaches: the first is based on a dictionary learning technique

Approved for Public Release; Distribution Unlimited.
2

whereas the second utilizes a multiple kernel learning (MKL [12]) method. In addition

to our prototype self-nomination approach, as a part of this work, we developed and

implemented a graphical user interface (GUI) that allows the user to apply several

different segmentation algorithms to a given image and provides visualization of the

segmented regions.

We used a subset of the ImageNet [13] database in our experiments.

Part of the contract items are addressed in the main text and the rest are

addressed in the appendix.

Approved for Public Release; Distribution Unlimited.
3

3 METHODS, ASSUMPTIONS, AND PROCEDURES

In this section, we provide a theoretical background for the segmentation techniques,

feature types and algorithms used in this report.

3.1 Segmentation techniques

Active Contour based segmentation using manual initialization: Implements an

active contour based segmentation technique with Vector field convolution (VFC) as

external field. The initialization of the segmentation is done manually. Here the

initialization is achieved by selecting a contour encompassing the object of interest in the

image. The final segmentation is obtained by further refining the initialized contour by

active contour models, constrained by external forces and image forces that pull it

towards image features like lines and edges. More information on this method can be

obtained in [14].

Active Contour based segmentation using automatic initialization with intensities:

Implements Poisson inverse gradient algorithm [15] for automated segmentation, and an

active contour method for elastic delineation of objects in the analyzed images. The main

thrust of the approach is an automatic initialization of the active contour by estimating the

underlying external energy field. In this method, the external energy is influenced by the

image intensities.

Active Contour based texture segmentation using automatic initialization with

intensities and texture: Another implementation of Active Contour based segmentation

with automatic initialization by Poisson Inverse gradient method [15]. The main

difference, introduced by this method, is that the external force field is generated as a

weighted combination of intensity and texture force fields. The intensity part is computed

as the vector field convolution as described in [14]. The textural field is computed at each

location 𝑠𝑠 and angular orientation 𝜃𝜃 as:

Etexture(𝑠𝑠, 𝜃𝜃) = � |𝑱𝑱𝑖𝑖(𝑥𝑥,𝑦𝑦) ∗
𝑁𝑁

𝑖𝑖≤1

𝐺𝐺𝜎𝜎,𝜃𝜃
′ (𝑥𝑥,𝑦𝑦)| (1)

where 𝐺𝐺𝜎𝜎,𝜃𝜃
′ (𝑥𝑥,𝑦𝑦) is the derivative of the Gaussian function, 𝐺𝐺𝜎𝜎 = 1

√2𝜋𝜋𝜎𝜎
exp �− 𝑥𝑥2+𝑦𝑦2

2𝜎𝜎2
� ,

with scale parameter 𝜎𝜎 and angular direction 𝜃𝜃, 𝐽𝐽𝑖𝑖(𝑥𝑥,𝑦𝑦) is the magnitude response of the

Approved for Public Release; Distribution Unlimited.
4

Gabor filter [16], for 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 filter banks. Equation (1) gives the edge energy in an

image. The texture field is obtained by evaluating the probability of finding a boundary

nearest to the location s. This is done by assessing the prediction error of the edge energy

along direction 𝜃𝜃 and 𝜃𝜃 + π at that location. The texture prediction error 𝑒𝑒(𝑠𝑠, 𝜃𝜃) and the

probability of edge detection 𝑝𝑝(𝑠𝑠,𝜃𝜃) are given respectively by

 ∑ |𝑱𝑱𝑖𝑖(𝑥𝑥,𝑦𝑦) ∗𝑁𝑁
𝑖𝑖≤1 𝐷𝐷𝐷𝐷𝐺𝐺𝜎𝜎,𝜃𝜃(𝑥𝑥,𝑦𝑦)| and 𝑒𝑒(𝑠𝑠,𝜃𝜃)

𝑒𝑒(𝑠𝑠,𝜃𝜃)+𝑒𝑒(𝑠𝑠,𝜃𝜃+𝜋𝜋)
. Here 𝐷𝐷𝐷𝐷𝐺𝐺𝜎𝜎,𝜃𝜃(𝑥𝑥, 𝑦𝑦) is difference of

Gaussians function evaluated along the angular direction 𝜃𝜃. Thus the texture force field is

obtained as:

𝑭𝑭𝑡𝑡𝑒𝑒𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒(𝑠𝑠) = � Etexture(𝑠𝑠,𝜃𝜃)
Θ(s)≤𝜃𝜃≤Θ(s)+𝜋𝜋

𝑒𝑒𝑗𝑗𝜃𝜃 (2)

where Θ(s) = argmin𝜃𝜃 ∑ 𝑝𝑝(𝑠𝑠,𝜃𝜃′)𝜃𝜃≤𝜃𝜃′≤𝜃𝜃+𝜋𝜋 .

The details of texture field formulation can be found in [17].

Area morphological operator based segmentation: This is an automated

segmentation method. This segmentation technique is based on area morphological

operators, which manipulate the connected components. These operators are used to

remove image segments based on their area while retaining larger segments or objects.

Detailed description of this method can be found in [18].

3.2 Features

Scale-invariant feature transform (SIFT): SIFT algorithm first looks for important

descriptor pixels to summarize the entire image. Once the algorithm determines the

important pixels (i.e., the descriptors), it computes local gradient histograms around each

descriptor to summarize each descriptor locally by forming a 128-dimensional features

for each descriptor pixel (point). More details can be found in [4].

Histograms of oriented gradients (HOG): HOG algorithm forms small overlapping

image patches from a given image and then for each patch, it computes local gradient-

based histograms. More details on HOG can be found in [6].

Color histograms: A color histogram forms bins in the red-green-blue (RGB) space

and maps each pixel of a given image into one of these bins. The resulting histogram is

called color histogram of the given image. Color histogram for hue-saturation-value

Approved for Public Release; Distribution Unlimited.
5

(HSV) is obtained in the same way by first converting the RGB to HSV space and then

by applying the binning process in the HSV space.

Local binary pattern: Local binary pattern (LBP) is another feature type that captures

the texture information on the image. This information is obtained by comparing the

intensity value of a pixel with its neighboring pixel values. Further details can be found in

[19].

Gabor features: Gabor features are mainly used as texture descriptors. The feature is

obtained by convolving an image with a sinusoid modulated Gaussian of varying

orientations and scale and then extracting the mean and variance of the response. Further

details are available in [20],[7].

Fourier shape descriptor: Fourier shape descriptor is used to encode the shape

information of a 2-D object. The main idea is to compute the frequency response of the

contour of the object. Each point on the contour taken sequentially can be viewed as a

signal. The Fourier transform of this signal provides the Fourier shape descriptor. Further

details for this feature type can be found in [21], [22].

3.3 Compact feature representation

Bag-of-Features approaches: Bag of visual features approaches [23] (also known as

bag-of-words, BoW) are used to map a set of multiple image features into a single

histogram. In these approaches, the entire data space is quantized into a fixed number of

bins and a histogram is generated by mapping each feature into one of the bins. While

there have been many different approaches proposed to form such histograms, all such

techniques fundamentally focus on how to represent and compute the histogram bins. K-

means, Fisher encoding, Vlad and dictionary learning based approaches have been widely

used in the literature.

Approved for Public Release; Distribution Unlimited.
6

Figure 1: Flow of process creating the BoW histogram.

Figure 1 illustrates the flow of processes of creating the BoW histogram fi for image i.

For each image, first various feature types such as SIFT and HOG, and then each set of

feature-types (i.e., the set of SIFT features and the set of HOG features) are mapped into

a fixed length histogram. Thus, while the total number of computed SIFT descriptors may

chance from one image to the next, the length of BoW histograms for SIFT features will

be the same for each image. Below, we briefly describe different ways to create BoW

histograms.

K-Means: K – means algorithm is a clustering algorithm that first partitions the data

space into K number of clusters (sets), and then it assigns (labels) any given vector xj into

one of those K cluster centers based on their Euclidian distance to the cluster centers ci

such that the sum of the distances (the cost function Q) between the assigned data vectors

𝐱𝐱𝑗𝑗𝑖𝑖 and their cluster centers ci is the minimum [24]. The value of K is determined by the

user.

𝑄𝑄 = � ��𝐱𝐱𝑗𝑗𝑖𝑖 − 𝐜𝐜𝑖𝑖�

𝑥𝑥𝑗𝑗∈𝑐𝑐𝑖𝑖

𝐾𝐾

𝑖𝑖=1

 (3)

Fisher Vector: Fisher vector encoding is another method for mapping the computed set

of features into a histogram. In order to form a Fisher vector, the data set is first divided

Approved for Public Release; Distribution Unlimited.
7

into K number of Gaussian distributions (as a Gaussian mixture model), and then both

mean and variance information are decoded into the Fisher vector. Therefore the size of a

Fisher vector histogram is 2KN (where N is the feature vector dimension and the value of

K is predetermined by the user). More information on Fisher vectors can be found in

[25].

Spatial Pyramid: The spatial pyramid method is used to partition the image into

smaller patches and compute feature histograms for each of those patches (sub-regions).

The final feature is obtained by concatenating the feature histogram of the entire image

along with the histograms of the sub-regions.

(a) (b)
Figure 2: Spatial pyramid computation for a sample image. (a) shows how an image is divided into
sub-regions and the feature histogram for each of the sub-region is computed. (b) The histograms
computed in (a) is then concatenated to form one single histogram which now serves as the feature of
the image.

This feature type incorporates spatial information into the histogram. The K-means

algorithm as described in the previous section is also utilized here for computation of the

feature histogram. This method is described in details in [26]. Figure 2 shows the basic

steps of computing the spatial pyramid histogram for a given sample image.

3.4 Classifiers

In this work, due to their widely accepted generalization performance, we used kernel-

based machine learning algorithms including support vector machines (SVM) and their

variant: multiple kernel learning (MKL). In addition to those two, a dictionary learning

based classifier was also implemented which exploits the sparsity in the dataset.

…….
…….

Approved for Public Release; Distribution Unlimited.
8

Support Vector Machines: For a given test (feature) vector x and a set of training

data TD={(x1,y1), (x2,y2),…, (xn,yn)}, where yi is the label of xi and n is the total number

of training samples, SVM [28] uses the following formulae to estimate its label yi:

𝑦𝑦 = sgn(𝑓𝑓(𝒙𝒙)) (4)

and

𝑓𝑓(𝒙𝒙) = �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾(𝒙𝒙,𝒙𝒙𝑖𝑖) − 𝑏𝑏
𝐾𝐾

𝑖𝑖=1

 (5)

where αi is a nonzero Lagrange multiplier for each SV xi, yi ∈{-1,+1} is the class label, k

is the number of support vectors, and b is the bias value. K(.) is the kernel function that

gives a measure of the similarity in a reproducing kernel Hilbert space [27], [28], [29].

The αi values in (5) are learned by maximizing the dual optimization problem Q(α):

 (6)

subject to: and C ≥ αi ≥0, (7)

where C is a pre-specified constant. Eq. (6) can be written in a matrix form:

Hαααcα TTQ
2
1)(−= (8)

where c= [1 1 1 ..1]T, α= [α1, α2,…, αn]T. H is the Hessian matrix where Hi,j = Ki,jRi,j and

where:

),(jiij K xxK = ,],...,,[],...,,[2121 n
T

n yyyyyy=R (9)

In this work, we use Gaussian kernel function defined as 𝐾𝐾�𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗� = 𝑒𝑒
1

2𝜎𝜎2
�𝐱𝐱𝑖𝑖−𝐱𝐱𝑗𝑗�

2

where

the σ value is a user specified scalar parameter.

Multiple Kernel Learning: MKL model is proposed to estimate the optimal kernel

[30]. It models the kernel function as a linear combination of t different kernel functions

such that:

𝐾𝐾(𝒙𝒙1,𝒙𝒙2) = � 𝛽𝛽𝑚𝑚𝐾𝐾𝑚𝑚

𝑡𝑡

𝑚𝑚=1

(𝒙𝒙1,𝒙𝒙2)

subject to ∑ 𝛽𝛽𝑚𝑚 = 1𝑡𝑡
𝑚𝑚=1

(10)

1 1 1

1() ()
2

n n n

i i j i j
i i j

Q y y Kα α α α
= = =

= −∑ ∑∑ i jx , x

∑
=

=
n

i
ii y

1
0α

Approved for Public Release; Distribution Unlimited.
9

where βm is the weight for the mth kernel. Applying (10) in (6) yields a new cost function

for MKL:

𝑄𝑄(𝛼𝛼,𝛽𝛽) = �𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−
1
2
��𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗 � 𝛽𝛽𝑚𝑚�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗�

𝑡𝑡

𝑚𝑚=1

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

 (11)

The survey paper in [31] studies the performance of various related MKL techniques.

In this paper, we use simpleMKL [32] to compute the weights. simpleMKL employs a

two-step optimization process in which the kernel weights βm are optimized by fixing the

αi values, and then αi values are optimized by fixing the βm values. The final values of βm

reveal the importance (the saliency) of the mth kernel function.

Dictionary learning based classifier: Sparse coding can be efficiently utilized by

representing a feature vector 𝑌𝑌 as a linear combination of some basis vectors. This can be

written as 𝑌𝑌 = 𝐷𝐷𝐷𝐷, where 𝐷𝐷 is a matrix in which columns represent the basis vectors,

which we call dictionary, and 𝐷𝐷 contains the representative sparse codes. The motivation

for sparse coding for classification is that projects the data on smaller dimensional

subspaces while maximizing the separation between data i.e., similar type of data will

share similar subspaces. The purpose is to build class representative dictionary, so that

sparse codes generate for features belonging to the same class, share similar dictionary

atoms. We solve the following optimization to obtain the desired dictionary.

argmin
𝑋𝑋,𝐷𝐷,𝐴𝐴,𝑊𝑊

𝒞𝒞(𝐷𝐷,𝐷𝐷,𝐴𝐴,𝑊𝑊)

 𝒞𝒞(𝐷𝐷,𝐷𝐷,𝐴𝐴,𝑊𝑊) = ‖𝑌𝑌 − 𝐷𝐷𝐷𝐷‖22 + 𝛾𝛾��̇�𝓧 − 𝑰𝑰𝐷𝐷�
2
2

+ 𝛼𝛼‖𝑄𝑄 − 𝐴𝐴𝐷𝐷‖22 +

 𝛽𝛽‖𝐻𝐻 −𝑊𝑊𝐷𝐷‖22
(12)

s. t ‖𝑥𝑥𝑣𝑣‖0 ≤ 𝑡𝑡 ∀𝑣𝑣

where �̇�𝓧 = �
𝓧𝓧1 … 𝟎𝟎
⋮ ⋱ ⋮
𝟎𝟎 … 𝓧𝓧𝐶𝐶

�, and 𝓧𝓧𝑖𝑖 is the sparse code generated for class 𝑖𝑖 determined

by solving the following
argmin
𝓧𝓧𝑖𝑖,𝐷𝐷𝑖𝑖

 ‖𝑌𝑌𝑖𝑖 − 𝐷𝐷𝑖𝑖𝓧𝓧𝑖𝑖‖22 𝑠𝑠. 𝑡𝑡 ∀𝑘𝑘 = {1 …𝑁𝑁𝑖𝑖}, ‖𝑥𝑥𝑘𝑘‖0 ≤ 𝑡𝑡 (13)

Then, �̇�𝓧,𝟎𝟎 ∈ ℝ𝐾𝐾×𝑁𝑁𝑖𝑖 . 𝑰𝑰 ∈ ℝ𝑀𝑀×𝑀𝑀 , is an identity matrix. 𝑄𝑄 = [𝑄𝑄1,𝑄𝑄2, … . . ,𝑄𝑄𝐶𝐶] , as

defined in [36], is the label determining the pair of dictionary atom and signal sharing the

same class. 𝑄𝑄𝑖𝑖(𝑎𝑎, 𝑏𝑏) = 1 if 𝒅𝒅𝑎𝑎 and 𝒚𝒚𝑏𝑏 are the dictionary atom and training data represents

Approved for Public Release; Distribution Unlimited.
10

class 𝑖𝑖. 𝐴𝐴 is a transformation matrix that would regularize the sparse codes of the same

class to share similar dictionary atoms. 𝐻𝐻 is the matrix containing the class labels i.e.,

𝐻𝐻(𝑖𝑖, 𝑏𝑏) = 1 if 𝒚𝒚𝑏𝑏 is a member of class 𝑖𝑖. Here we assume a linear classifier model; the

label of an input signal is given as:

(ℓ(𝒚𝒚𝒗𝒗) = 𝑖𝑖) = argmax
𝑖𝑖

(𝑊𝑊𝑇𝑇𝒙𝒙𝑣𝑣) (14)

𝑊𝑊 is the classifier determinant parameter, which regularizes the sparse codes from same

class to share similar dictionary atoms. The details of the method described here can be

found in [33], [34], [35], [36]. The following is used in conjunction with this method.

Mutual Information: Mutual information between two random variables provides a

measure of how much dependent they are on one another. Higher the mutual information

greater is the dependency. A relevance measure between features and the class they

belong to can be obtained by maximizing the mutual information [37], [38], [39], [40],

[42]. For a given feature 𝒙𝒙 the mutual information between the feature and its class

ℓ(𝒙𝒙) = 𝑖𝑖 is given by (15).

𝕀𝕀(𝒙𝒙,ℓ(𝒙𝒙) = 𝑖𝑖) = 𝐻𝐻(𝑖𝑖) −𝐻𝐻(𝑖𝑖|𝒙𝒙) (15)

where 𝐻𝐻(𝑖𝑖) is the entropy given by:

𝐻𝐻(𝒙𝒙) = 𝑝𝑝(𝒙𝒙) log �
1

𝑝𝑝(𝒙𝒙)� (16)

3.5 Data sets

Along this project, we have used several datasets including ETH Zurich building dataset,

Caltech 101 [43], Caltech 256[44], PASCAL [45]and ImageNet [13] datasets. We

include a brief description for each dataset below:

ETH Zurich buildings dataset: This dataset contains over 1000 building images. The

images contain mainly Zurich city buildings. The database is created and maintained by

ETH-Zurich and can be downloaded from the URL:

http://www.vision.ee.ethz.ch/datasets/index.en.html
Caltech 101 Dataset: This dataset contains101 object categories with a total of 9,144

images. The number of images in a class varies from 31 to 800 [43]. The dataset is

available from URL:

http://www.vision.caltech.edu/Image_Datasets/Caltech101/

Approved for Public Release; Distribution Unlimited.
11

Caltech 256 Dataset: There are 257 (formed of 256 object categories and one “clutter”

category) image classes in this dataset. Each class contains at least 81 images. In this data

set there are 30607 images total. Since the number of available images in each class is

relatively small (about 100 images per class on average). The dataset is available from

the following URL:

http://www.vision.caltech.edu/Image_Datasets/Caltech256/.

PASCAL Dataset: The Pascal dataset [45] has been widely used as a benchmark

dataset in many image-based recognition and classification systems. The data set and

more information is available from the URL:

http://pascallin.ecs.soton.ac.uk/challenges/VOC/

ImageNet Dataset: This is the dataset used for the “ImageNet large scale visual

recognition challenge” (ILSVR) 2013 [13]. In the data set, some categories are quite

similar in appearance (such as categories 5, 6, 7 and 8 in Figure 7 and in Figure 8); the

objects in some images are occluded and some images may include more than one object

type. The entire dataset contains two overlapping datasets (for two different tasks): The

detection and classification datasets. More information on ImageNet data set can be

found from the following URL: http://www.image-net.org/challenges/LSVRC/2013/.

Classification category: The classification category includes images for training,

validation and for testing. It also includes the bounding box information for the training

images. The training set includes 1000 categories and each category includes about 1300

images.

Detection category: The detection category (and the folder) includes images for

training, validation and testing. The bounding box information is also provided in xml

format for validation and training images. The xml format for the bounding boxes can be

read by the development kit that is also included under the detection category.

3.6 Assumptions

In this work, we have the following assumptions:
a) There is an image database available.
b) Various feature-types are pre-computed and available for each image in the

database.
c) There is a full running version of Matlab.
d) Third party libraries are already available within the computing environment.

Approved for Public Release; Distribution Unlimited.
12

4 RESULTS AND DISCUSSION

In this section, we present the results obtained by our presented approaches, and the

documentation for the attached software that is used to generate our results.

4.1 Segmentation and User Interface (sec. 4.1 from contract)

4.1.1 Develop and implement a VMR approach that applies segmentation and
classification in order to identify which subsequent object recognition
algorithms to use

(sec. 4.1.1. from contract) Automatically identifying objects from a query image based on

features like shape, color and texture using a set of algorithms first requires the object to

be isolated from its background clutter so that the contour of the object as well as the

region (that accounts for the color and texture of the object) within the contour is also

available. The objective is, given a query image as an input to a segmentation algorithm,

the output would be the isolated object of interest. The segmentation algorithm forms the

basis of a prototype system that would demonstrate the ability to dynamically select the

appropriate image analysis algorithm based on query type and image contents. A robust

segmentation algorithm is desired as inclusion of significant amount of background

clutter increases the probability of detecting false positives thus implying that the overall

performance depends on the accuracy of segmentation.

4.1.2 Develop working software including plug-and-play interfaces

(sec. 4.1.2 from contract) The segmentation algorithms have been developed in Matlab

environment. Each of the algorithms is implemented as separate functions for ease of use,

which takes an image as an input and output the coordinates of the contour. A simple yet

effective guided user interface is developed to choose the type of segmentation and

display the contour.

4.1.3 Demonstrate a VMR approach that applies segmentation and classification.
Document algorithm, software, and results of demonstration

(sec. 4.1.3-4.1.4 from contract) We developed our software in Matlab environment. The

various functions and GUI (user interface) are available in the attached disk.

Approved for Public Release; Distribution Unlimited.
13

List of functions for implementing segmentation algorithms:

1) VFC_segmentation.m is the main function for executing Active contour based

segmentation using Vector Field convolution. This algorithm uses manual

initialization. The user is prompted to initialize the snake by selecting points around

the object of interest.

vert = VFC_segmentation(Imagefile)

Input: Imagefile; provide the full path of the image

Output: vert; The co-ordinates for the contour is stored sequentially in the variable

2) PIG_segmentation.m is the main function for executing the algorithm Active

contour using Vector Field convolution and with automatic initialization by Poisson

inverse gradient.

[numseg vert]= PIG_Segmentation(Imagefile)

Input: Imagefile: provide the full path of the image

Output:Numseg: This variable stores the number of contours obtained

vert: The co-ordinates for the contours is stored sequentially in the variable

3) TexturePIG_Segmentation.m is the main function for executing the algorithm that

uses VFC and texture fields to compute the external force field and automatic

initialization by Poisson inverse gradient. To use this algorithm add PIG_texture to

Matlab path

[numseg vert] = TexturePIG_Segmentation(Imagefile)

Input: Imagefile: provide the full path of the image

Output:Numseg: This variable stores the number of contours obtained

 vert: The co-ordinates for the contours is stored sequntially in the variable

For the above three methods add the Active Model Toolbox (AMT), Version 2.0, toolbox

to Matlab path. This is also available from http://viva.ee.virginia.edu/

Type 'help amt' or 'doc amt' for function list and help. Please keep the folder name AMT

unchanged.

4) AOC_Segmentation.m is the main file for demonstrating segmentation using area

morphologicaloperators.

Approved for Public Release; Distribution Unlimited.
14

[numseg vert]= AOC_Segmentation(Imagefile)

Input: Imagefile: provide the full path of the image

Output:Numseg: This variable stores the number of contours obtained

vert: The co-ordinates for the contours is stored sequentially in the variable

Segmentation results using the three different algorithms with automated initialization is

shown in Figure 3.

(a) (b) (c)

Figure 3: Segmentation results using the different segmentation algorithms. (a) Shows results of
active contour model with image intensity driven external force field and automated initialization by
Poisson inverse gradient, (b) shows segmentation results for image intensity and texture driven
external force field with PIG based automated initialization. (c) Shows segmentation results using
area morphological operators.

User Interface for segmentation

VMR_segmentation runs the GUI for the automated segmentation algorithms listed

above. The GUI has options for selecting the algorithm, selecting the image and running

the segmentation process. The left display panel shows the image selected. The main

display panel (on right) shows the different segments (the contours of the segments are

plotted in different colors) of the image. A sample of the GUI screen is shown in Figure

4.

Approved for Public Release; Distribution Unlimited.
15

Figure 4: The GUI developed to compare the different automated segmentation algorithms. The GUI
has the option to select the algorithms and also the image to segment. The left hand panel displays the
image selected and the right panel displays the image with the segments.

User Interface for testing classification performance using various features:

To enhance the ease of using and testing all the algorithms implemented to this point, a

simple yet efficient graphical user interface (GUI) has been developed in Matlab. The

GUI would provide options for selecting the methods the user wants to test. Also the

option for selecting the query image, performing segmentation of the query image (if

required) needs to be provided. The output for segmentation would be the segmented

object and respective outputs for the different methods used to date. A screenshot for the

GUI is shown in Figure 5.

Approved for Public Release; Distribution Unlimited.
16

Figure 5: Shows a sample screen of the designed user interface. The method to be used can be
selected from the drop down button. An option to select the query image is present and the query
image is shown at the bottom left hand corner. On the right the retrieved images are shown in order
of the best possible match. The ‘previous and next’ buttons are used to scroll through the pages to
view the next set of retrieved images.

4.1.4 CBIR as an Ingredient in Recognition (sec. 4.2 from contract)

Content-based image retrieval (CBIR) has been used as a promising approach in many

applications including classification, recognition and categorization [41], [43], [3]. CBIR

techniques focus on the content of an image as opposed to focusing on semantically

segmented image parts only. In this section, we specifically focus on the use and

effectiveness of CBIR for recognition.

A typical CBIR system contains two major steps including the feature computation step

and the (classifier) training step. The paper [1] includes a detailed survey on recent CBIR

techniques. The performance of a given CBIR system depends on the selected feature-

type (such as SIFT, HOG or color histogram) to summarize the image content and on the

selected classifier’s type (such as SVM, a Neural Network, a Bayesian classifier, etc.).

The final retrieval process is typically performed by applying the trained classifier on the

new input image to “predict” its category (i.e., the label) from a range of pre-determined

candidate image categories.

The content of an image can be represented in different ways including the texture,

color and shape information. And based on the image category and image content, using

different types of information to characterize and discriminate different image categories

Approved for Public Release; Distribution Unlimited.
17

typically provide better results. Therefore in this section, we design and use a CBIR

system that can compute more than one feature-types characterizing different properties

of a given image, and then select the most discriminative feature-type for each image

category.

4.1.5 Develop and implement software to identify faces via a generalized CBIR
method

(sec. 4.2.1 from contract) In the back off meeting with the project director, we were

suggested to evaluate weapons instead of faces. Therefore, in this section we focus on

weapon identification via CBIR.

For weapon classification purpose, we used CalTech-256 data set. CalTech256 dataset

includes ak47 images under one of its 257 categories. For each image in the data set, first

corresponding SIFT features are computed. Then, these set of SIFT features are mapped

into BoW histograms by using a k-means algorithm. As a classifier, in this section, we

used the support vector machines (SVM) algorithm. For training we selected 30 samples

from each class and trained the SVM. The training data is formed such that the ak47

images form (+1) class and the images from the remaining 256 categories form the (-1)

class. Figure 6 shows the results obtained at different values of the Gaussian kernel

parameter. The best accuracy is obtained at the minimum kernel value 0.1. Gaussian

kernel is used. The highest achieved accuracy was %99.61. In our experiments, we used

Matlab’s built-in SVM implementation where the optimization technique was selected as

“sequential minimal optimization (SMO). The error percentage is defined as:

𝑒𝑒𝑒𝑒𝑒𝑒𝐷𝐷𝑒𝑒 𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑝𝑝𝑡𝑡𝑎𝑎𝑔𝑔𝑒𝑒 = 100
𝑁𝑁
∑ 𝑎𝑎𝑏𝑏𝑠𝑠(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖′)𝑁𝑁
𝑖𝑖=1 (17)

where y’ is the predicted label and N is the total number of test samples. The function

abs(.) is the absolute value.

Approved for Public Release; Distribution Unlimited.
18

Figure 6: This figure illustrates how the performance of the SVM classifier changes with respect to
the change in the kernel parameter. Performance drops drastically, as the value of the chosen
Gaussian kernel parameter increases.

4.1.6 The value of CBIR as an ingredient in classification

(sec. 4.2.2 from contract): A typical CBIR technique utilizes a two-step approach in

which first a set of features computed for an image and then a collection of all the

computed features is used to represent the entire image in a classifier. A classifier is

trained with these features for retrieval purposes.

In this section to determine the value of CBIR as an ingredient in classification, we

used different feature-types including SIFT, HOG and color histograms to represent the

image content. Our experiment data is a subset of the ImageNet dataset. The subset

includes 20 classes and each class includes 200 images. As classifier, we used both SVM

and MKL implementations. The results are presented in the next section.

4.1.7 Documentation and results

(sec. 4.2.3 from contract): Our software runs on Matlab and uses third party libraries. The

software is available in the attached CD-ROM.

A) Documentation:

A list of feature computing functions and their descriptions are given below:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

10

20

30

40

50

60

70

80

90

100
error percentage vs. kernel parameter

Gaussian kernel parameter

er
ro

r p
er

ce
nt

ag
e

(1
-a

cc
ur

ac
y)

Approved for Public Release; Distribution Unlimited.
19

1) computeSIFTFeatures.m : This function computed SIFT features for the set of input

images. This function takes two parameters: the first one is trainingdata containing the

entire image data set, and the second one is imagepatchdimension used as an internal

threshold.

Example usage:

SIFTFeatures = computeSIFTFeatures(trainingdata,imagepatchdimension);

The input data is saved in standard two dimensional Matlab cell format. The first

dimension of the cell gives the total number of classes and the second dimension gives

the total number of images in each cell (this code assumes that each class contains the

same number of images as in the ImageNet data set). This a particular cell such as

trainingdata{i,j} contains the jth image information from the ith class. Since our main

image source is from ImageNet dataset, we save both the image and the bounding box

information in each cell. Thus, the command trainingdata{i,j}.image gives the actual

image (as a 2D matrix), the command trainingdata{i,j}.bbox would give the bounding

box coordinates for the object in that image as a vector. Its format is [xmin, xmax, ymin,

ymax].

The second parameter imagepatchdimension is used to checks for a potential error

given in the bounding box information. If the bounding box information is too narrow

along either axis, then it will be considered as error and instead of the bounding box

information, the entire image information is used for that particular corresponding image.

Imagepatchdimension is the minimum acceptable bounding box thickness along either

axis. (In our experiments, it is set to 6).

It returns all the computed SIFT features for the entire image dataset. The output is also

in the cell format having the same dimensions as the input data. Since SIFT features

yields both descriptor information and the features for each descriptor, we saved both

descriptor information and features separately for each image. For instance,

SIFTFeatures{i,j}.siftdata.f1 yields SIFT features (in the format as they are computed in

VLFeat), and SIFTFeatures{i,j}.siftdata.d1 yields SIFT descriptor information in the

same format as they are computed in VLFeat.

2) computeRGBFeatures.m: This function computes color histograms for the given set of

input images. Example usage:

Approved for Public Release; Distribution Unlimited.
20

RGB_features = computeRGBFeatures(trainingdata,imagepatchdimension,

binnumberalongeachaxis);

 It takes a set of input images and their corresponding bounding box informations as

input (trainingdata) and saves the color histograms in the same cell format (see the

computeSIFTFeatures.m description for details on the input data format). The second

threshold (imagepatchdimension) is used to ignore the bounding box information if its

any dimension is less than the specified pixels along either axis. The third parameter

binnumberalongeachaxis sets the total number of bins along each color (Red, Green and

Blue) channels. Therefore, the length of final color histogram is

binnumberalongeachaxis^3.

4) computeHOGFeatures.m: This function computes the HOG features for the given set

of input images and corresponding bounding boxes in trainingdata. Example usage:

HOG_features = computeHOGFeatures(trainingdata,imagepatchdimension);

The input images are divided into small square blocks (the block size is given by the

second input). Similar to previous functions, this function also uses the second input as

being the threshold for checking the bounding box size and ignores the bounding box

information if the bounding box size is smaller than this threshold (in pixels) in either

dimension.

5) computeSYMFeatures.m: This function computes the symmetry features as described

in [9] for the given set of input images and corresponding bounding boxes in

trainingdata. Example usage:

SYM_features = computeSYMFeatures(trainingdata,imagepatchdimension);

List of functions computing Bag-of-Words Histograms:

Below functions compute BoW histograms for SIFT and HOG features.

1) computeBoWHistogramsForSIFT.m: This function computes the BoW histograms

from the given set of SIFT features. Example usage:

[SiftHistograms,Centroids, covariances, priors] =

computeBoWHistogramsForSIFT(trainingSIFTdata,Binsize,Fisher_KMeans);

where trainingSIFTdata is the set of SIFT features (in a cell structure) computed by the

computeSIFTFeatures function, Binsize is the parameter K (as defined in K-means and

Fisher vectors). Fisher_KMeans is a flag that selects the method to compute the

Approved for Public Release; Distribution Unlimited.
21

histogram bins. If it is set to 1, K-means algorithm is used to compute the histogram,

otherwise Fisher vectors are computed as the BoW histograms.

It returns the computed histograms (SiftHistograms), Bin Centroids (mean values), and

the covariance and prior values (covariances, priors) for Fisher vector.

2) computeBoWHistogramsForHOG.m: This function computes the BoW histograms

from the given set of HOG features. Example usage:

[HOGHistograms,Centroids, covariances, priors] =

computeBoWHistogramsForHOG(HOG_features,Binsize,Fisher_KMeans);

Please run the script CBIR_demo1.m as a demonstration of all these functions.

B) Results:

The below experiments (Experiment 1, Experiment 2 and Experiment 3) computes the

area under the curve (AUC) values for each category as a performance criterion. We

computed the area under the curve (AUC) values from the precision and recall curves of

the test data. Precision is defined as TP/(TP+FP) and recall is defined as TP/(TP+FN),

where TP is the total number of true positives and FN is the total number of false

negatives.

Experiment 1: In this experiment, we have used a subset of ImageNet data set. The

subset includes 20 classes where each class contains 200 images. HOG, SIFT and color

histograms are computed for each image in the data set. shows sample images from each

class from the dataset.

Figure 7: Sample images for each category from the dataset used in experiments 1 and 2.

At this section we studied if using a single feature type (such as HOG) for all image

categories is sufficient. For that, we trained the classifier (MKL) by using the three

feature-types (SIFT, HOG, color histograms) for each class.

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8 Cat. 9

Cat. 10 Cat. 11 Cat. 12 Cat. 13 Cat. 14 Cat. 15 Cat. 16 Cat. 17 Cat. 18 Cat. 19 Cat. 20

Approved for Public Release; Distribution Unlimited.
22

Table 1: Area under the curve (AUC) values computed from precision and recall values for the 20-
200 dataset where K=256.

Class: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
C: 0.19 0.21 0.16 0.18 0.05 0.11 0.07 0.11 0.12 0.07 0.12 0.04 0.05 0.05 0.07 0.13 0.09 0.05 0.03 0.08
S: 0.18 0.24 0.21 0.05 0.09 0.30 0.14 0.11 0.14 0.26 0.11 0.08 0.05 0.07 0.08 0.13 0.05 0.15 0.04 0.14
H: 0.22 0.15 0.66 0.25 0.08 0.17 0.18 0.08 0.12 0.37 0.16 0.10 0.12 0.15 0.27 0.44 0.43 0.13 0.06 0.35

C+S: 0.17 0.26 0.15 0.19 0.05 0.13 0.16 0.15 0.22 0.13 0.11 0.07 0.05 0.05 0.09 0.21 0.07 0.16 0.04 0.14
S+H: 0.21 0.19 0.62 0.24 0.08 0.34 0.23 0.10 0.13 0.36 0.15 0.09 0.12 0.14 0.26 0.43 0.42 0.12 0.06 0.38
C+H: 0.29 0.25 0.68 0.26 0.07 0.12 0.21 0.13 0.18 0.38 0.19 0.06 0.11 0.18 0.27 0.47 0.43 0.13 0.07 0.34

C+S+H: 0.27 0.27 0.66 0.30 0.07 0.14 0.22 0.15 0.28 0.35 0.17 0.08 0.11 0.18 0.26 0.46 0.42 0.12 0.06 0.37

Table 1 is computed by training the MKL classifier with 190 samples. The first 95

samples are from the (+1) category and the remaining 95 samples are formed by taking 5

samples from each other class (5x19=95). All the remaining images are used for the

testing case (3530 images). The images with no features are ignored in the data set (total

of 14 images). For this test, the K value (for K-means algorithm) is set to 256 for both

SIFT and HOG BoW histograms.

The highest value among all the feature combinations is highlighted for each class in

the table. As it can be seen, the most of the strongest values are obtained by combining

different feature types.
Table 2: CBIR results over 20 classes are presented. The CBIR system is tested for various
combinations of SIFT (S), HOG (H) and color histograms (C). The average area under the curve
values (AUC) are listed under each feature combination

 Features: C S H S+C S+H H+C All-3

Average AUC: 0.10 0.13 0.22 0.13 0.23 0.24 0.25

Experiment 2: This experiment is conducted to study the effect of the K value on the

classification performance. We have used the same dataset and the approach used in

Experiment 1. Therefore, in this experiment we only changed the K value to 1000 in K-

means algorithm and created the BoW histograms accordingly.

As classifier, MKL algorithm is being used with the same settings as in Experiment 1.

MKL is trained for each class separately using one vs. all approach (95 samples for

positive class, and 95 samples for the negative class are used for training). Table 3 lists

AUC values computed from the precision and recall figures.

Approved for Public Release; Distribution Unlimited.
23

Table 3: Area under the curve (AUC) values computed from precision and recall values for the 20-
200 dataset where K=1000.

Class: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
C: 0.19 0.21 0.16 0.18 0.05 0.11 0.07 0.11 0.12 0.07 0.12 0.04 0.05 0.05 0.07 0.13 0.09 0.05 0.03 0.08
S: 0.15 0.26 0.08 0.03 0.07 0.27 0.14 0.10 0.15 0.26 0.08 0.05 0.05 0.05 0.07 0.14 0.03 0.19 0.04 0.15
H: 0.21 0.15 0.67 0.19 0.08 0.15 0.23 0.08 0.19 0.32 0.19 0.08 0.11 0.13 0.27 0.37 0.40 0.12 0.06 0.34

C+S: 0.16 0.28 0.15 0.19 0.05 0.12 0.12 0.14 0.14 0.12 0.10 0.07 0.05 0.05 0.08 0.21 0.08 0.19 0.04 0.18
S+H: 0.21 0.24 0.63 0.17 0.08 0.33 0.23 0.09 0.16 0.30 0.16 0.08 0.10 0.12 0.26 0.34 0.40 0.16 0.06 0.34
C+H: 0.27 0.23 0.69 0.23 0.08 0.13 0.24 0.15 0.26 0.32 0.16 0.06 0.10 0.12 0.27 0.40 0.40 0.12 0.06 0.35

C+S+H: 0.26 0.31 0.65 0.30 0.07 0.13 0.24 0.15 0.25 0.30 0.15 0.07 0.10 0.13 0.25 0.38 0.40 0.16 0.06 0.36

Table 4 shows the average value (over 20 classes shown in Table 3) for each feature

combination.
Table 4: CBIR results over 20 classes are presented. The CBIR system is tested for various
combinations of SIFT (S), HOG (H) and color histograms (C). The average area under the curve
values (AUC) are listed under each feature combination.

 Features: C S H S+C S+H H+C All-3

Average AUC: 0.10 0.12 0.22 0.13 0.22 0.23 0.24

Experiment 3: In addition to Experiment 1 and Experiment 2, we have also created

another data set containing 30 classes (i.e., image categories) where each class contains

300 images. This experiment is designed to see if the results are consistent as the number

of images increase in the dataset. Similar to Experiment 1 and 2, in this experiment, one

vs. all approach is used for each class and MKL algorithm is used with the same

parameters.

Figure 8: Sample images from each category are shown from the used data set [13]. Each image is
down-sampled and resized to fit into the figure.

BoW histograms are created by using K-Means algorithm where K is set to

1000. The average AUC values for that data set are given in the below table. Figure 8

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8 Cat. 9 Cat. 10

Cat. 11 Cat.12 Cat. 13 Cat. 14 Cat. 15 Cat.16 Cat.17 Cat. 18 Cat. 19 Cat. 20

Cat. 21 Cat. 22 Cat. 23 Cat. 24 Cat. 25 Cat. 26 Cat. 27 Cat. 28 Cat. 29 Cat. 30

Approved for Public Release; Distribution Unlimited.
24

shows the AUC values in three different figures. Each graph in the figure compares the

results of different feature-type combinations. Fig. 8a compares the AUC values for

Color, SIFT, Color & SIFT, Color & SIFT & HOG combinations. Fig. 8b compares the

AUC values for HOG, Color, HOG & Color, Color & SIFT & HOG combinations. Fig.

8c compares the AUC values for HOG, SIFT, HOG & SIFT, Color & SIFT & HOG

combinations. Table 5 shows the average AUC values computed over 30 classes for each

feature-type combination.
Table 5: CBIR results over 30 classes are presented. The CBIR system is tested for various
combinations of SIFT (S), HOG (H) and color histograms (C). The average area under the curve
values (AUC) are listed under each feature combination.

 Features: C S H S+C S+H H+C All-3

Average AUC: 0.07 0.08 0.16 0.10 0.17 0.19 0.20

(a) (b)

(c)

Figure 9: Comparisons of the area under the
precision-recall curves for each object category are
shown vertically: On each plot, combinations of a
pair of feature-types are shown and those results
are compared to the case where all three feature-
types are used. (a) AUC values for each class are
given for the Color, SIFT, Color&SIFT,
Color&SIFT&HOG features. (b) AUC values for
each class are given for the HOG, Color,
Color&HOG, Color&SIFT&HOG features. (c)
AUC values for each class are given for the HOG,
SIFT, HOG&SIFT, Color&SIFT&HOG features.

Approved for Public Release; Distribution Unlimited.
25

A conclusive discussion for Experiment 1, 2 and 3:

A comparison of Table 2 and Table 4 shows that increasing K value from 256 to 1000

shows a slight performance reduction on average. The results in Table 5 shows lower

than the ones shown in Table 4 This is mainly due to the uneven number of used data (for

example 29x300= 8700 images for the negative class vs. 1x300=300 images for the

positive class). However, both tables (Table 4 and Table 5) consistently show that,

combining different feature-types increases the performance and accuracy in

classification.

While HOG was the dominant single feature-type providing the highest AUC value

among all three feature-types on average, Table 1, Table 3 and Figure 8 show that there is

no single feature-type that can show the best classification performance for “all the

classes” and that the combination of different-feature types can provide significant

improvement in classification.

Table 1, 2, 3 and Table 4 show that the content of an image carries important

information for the classifier. The feature-type used to represent that image content can

make significant difference on the performance of a classifier. Thus, it remains important

to select the best feature-type or the set of the best feature-types for each category

separately.

4.2 Automatic Building Recognition (sec. 4.3 from contract)

Here, we implement a building recognition algorithm that is based on the algorithm

presented in [46].

4.2.1 Techniques for building recognition

(sec. 4.3.1 from contract): Our building recognition approach includes following steps:

1. Detect all of the lines in the image using Canny edge detection and Hough transform.

2. Look at the entropy of the line orientations, and remove lines in regions of the image

that have high entropy (this is to deal with random lines detected in trees, bushes, etc.)

3. Of the low-entropy lines, count the number of lines that run parallel to each other:

getParallelLines()

Approved for Public Release; Distribution Unlimited.
26

4. Of the low-entropy lines, determine the lines that co-terminate (meaning two lines

that come to an end, such as the frame in a window or roof or masonry on a building,

stairs, etc.): getCoterminations()

5. Of the co-terminating lines, count the lines that form a U (3 lines co-terminate at

roughly 90 degrees) or an L (2 lines co-terminate at roughly 90 degrees): getUjunctions()

getLJunctions()

6. Normalize the num parallel lines, num U junctions, and num L junctions, by the total

number of low entropy lines to form the descriptor array of 3 floats:

extractLineDescriptor()

7. Train SVM (30/70 train/test) using only the building descriptors and all of the

categories of images that we had in the VMR image set: buildClassifiers()

8. Generate a confusion matrix for all of the classes: buildClassifiers()

4.2.2 Documentation, Results and Assessment of the presented techniques on
building recognition

(Sec. 4.3.2. – 4.3.3 from contract): This algorithm is implemented in C/C++. The
corresponding files are cbir.c and cbir.h. Below is a list of the methods included in these
files:

getParallelLines(): this method computes the parallel lines in the code.

getCoterminations(): this is the method that returns the lines that co-terminate.

getUjunctions(): This method computes the U junctions and returns the information for

them.

getLJunctions(): This method computes L junctions and return them.

extractLineDescriptor(): This method computes the line descriptors and return them.

buildClassifiers(): This method builds an SVM classifier and trains the classifier by

using 30 building descriptors. It also generates a confusion matrix.

Figure 10 shows both the original images and the detected L and U junctions.

Approved for Public Release; Distribution Unlimited.
27

Original Building Hough transform with Canny edge detection

Figure 10: A building image and the detected L and U junctions are shown in the image. The right
most image shows a zoomed in portion of a building displaying the L-U junctions.

4.3 CBIR as a “backstop” algorithm for recognition (sec. 4.4 from contract)

The current state-of-the-art recognition techniques focus on using template matching

based models such as deformable parts models, (DPM [47]). Thus, these techniques

analyze certain parts of images individually yielding the capability of drawing a bounding

box around the detected objects. On the other hand, CBIR techniques typically analyze an

image based on the entire image content. Therefore, CBIR techniques can be used as a

backstop, when the “template matching” based techniques cannot make a decision with

confidence. This approach is illustrated in Figure 11.

In this section, we assume that for a given test image, the template-match based

algorithms did not yield a result with a reliable confidence already. In such a scenario, we

propose using a CBIR approach in which various image features are computed and used

as input for a classifier. The classifier recognizes the image category accordingly. Please

refer to Section 4.2 for the details of the used CBIR system.

Approved for Public Release; Distribution Unlimited.
28

Figure 11: Use case scenario for CBIR as a backstop algorithm for recognition.

Please refer to section 2.5.2 for the quantitative analysis of our proposed system.

4.4 Viability of Self-nomination (sec. 4.5 from contract)

Self-nomination nominates (assigns weights) individual algorithms (such as SIFT, HOG

and color histograms) for a given category. The proposed self-nomination approach and

the use-case scenario are given in Figure 12.

In our first proposed approach, each algorithm has its own weight and the importance

of the algorithm is reflected in the value of the weight such that the values of weights

change between zero and one signifying the importance of the algorithm. The weights are

computed through a multiple kernel learning framework.

Figure 12: Self-nomination in VMR.

Approved for Public Release; Distribution Unlimited.
29

The second approach uses a dictionary learning technique to develop a class

discriminative dictionary for the training dataset. This discriminative dictionary is then

used to determine the class label for the test images. The self-nomination of the

algorithms for a given test image is based on maximizing mutual information.

4.4.1 Investigate and develop methodology for a “self-nomination” paradigm in
which a large pool of algorithms self-score their suitability and implement in
software.

(sec. 4.5.1 from contract): In this section we discuss the self-nomination paradigm and

two different approaches to address the problem.

A. In this section we propose a similarity-based approach for self-nomination. In our

proposed approach, we compute the kernel matrices as given in Eq. (9) for each

algorithm from a pool of the algorithms and then, weight each kernel matrix such that its

weight will reflect its suitability. The problem, then, becomes finding an automated

approach that will automatically compute the kernel weights based on their suitability.

A kernel function K(.) fundamentally is a measure of the similarity in a reproducing

kernel Hilbert space [27], [49]. Therefore in this paper, we will define the similarity with

K(.). For the rest of the paper, we will use the notation

to represent the BoW histogram

of the ith image from the mth object category where m = 1,2.3,…,L (where L is the total

number of object categories). Furthermore, we will assume that each category included

the same number (A) of images and Kg(.) represents the similarity (i.e., the kernel) for the

gth feature-type where g = 1,2,3,…N (where N is the total number of feature-types). Then,

ideally, for a given BoW histogram xi we would expect that the similarity between xi and

any other image’s histogram from its category should be greater than its similarity to any

image from any other category for g∀ such that:

),(),(),(1+>≥ m
j

m
i

gm
j

m
i

gm
i

m
i

g KKK xxxxxx (18)

where m+1 represents any other object category (i,j=1,2,…,A). Then, for all the images in

the category m, we would expect:

∑∑
=

+

=

>
A

j

m
j

m
i

g
A

j

m
j

m
i

g KK
1

1

1
),(),(xxxx (19)

However, for some feature-type d we obtain:

m
ix

Approved for Public Release; Distribution Unlimited.
30

),(),(1+< m
j

m
i

dm
j

m
i

d KK xxxx (20)

Assigning a different weight to each feature-type would yield the following inequality:

∑∑∑∑
= =

+

= =

>
N

g

A

j

m
j

m
i

g
g

N

g

A

j

m
j

m
i

g
g KwKw

1 1

1

1 1
),(),(xxxx (21)

where wg is zero if Eq. (19) holds. Notice that Eq. (20) is shown only for one class (the

class m). In this work, our goal is finding an approach to learn the coefficients wg. For

that purpose a binary classifier (with a “one vs. all” approach) fits our methodology since

such a classifier can learn weights based on their discriminative power for each object

category where the object category represents the (+1) class and all other categories

would represent the (-1) class collectively. We choose the MKL framework to find the

coefficients wg where w = β and where each gram matrix [27] is formed of all the BoW

histograms for the feature-type g such that:

),(ji
gg

ij K xxK = (22)

and Ki,j in (11) is modelled such that:

∑
=

=
N

g

g
ijgij

1
KK β (23)

In (22), each feature-type forms a Gram matrix and its weight signifies the saliency of

that feature-type for the detection of the (+1) class. Our implementation uses SimpleMKL

[32] as a solver.

B. In this approach we propose an information theoretic approach to dynamically choose

the feature descriptor based on a given query type and the image contents. As mentioned

earlier a relevance measure between features and the class they belong can be obtained by

maximizing the mutual information. Hence we approach the problem from information

theoretic viewpoint, that a particular feature is more accurate for classifying an image

when the mutual information between the feature and the class is maximized [36].

Approved for Public Release; Distribution Unlimited.
31

Figure 13: Detailed use case scenario for mutual information based feature nomination method.

We define a feature descriptor type 𝐹𝐹𝑙𝑙 where 𝑙𝑙 = 1 … … . 𝐿𝐿 and 𝐿𝐿 denotes the number of

feature types being used for classification. For our experiments we use four features 𝐹𝐹1:

scale invariant feature transform (SIFT), 𝐹𝐹2: histogram of oriented gradients (HOG),

𝐹𝐹3: local binary pattern (LBP), and 𝐹𝐹4: HSV color histograms. We use our feature

nomination algorithm to choose between these four features to provide the ultimate

classification result. A detailed use case scenario of our method is shown in a block

diagram in Figure 13.

The feature vector 𝑌𝑌𝑙𝑙 = �𝑌𝑌1𝑙𝑙 ,𝑌𝑌2𝑙𝑙 , … . . ,𝑌𝑌𝐶𝐶𝑙𝑙� corresponds to feature type 𝑙𝑙, for

classes 1 … .𝐶𝐶. The respective sparse codes are 𝐷𝐷𝑙𝑙 = [𝐷𝐷1𝑙𝑙 ,𝐷𝐷2𝑙𝑙 , … . . ,𝐷𝐷𝐶𝐶𝑙𝑙]. The sparse codes

for a particular feature descriptor 𝑙𝑙 is obtained by solving

argmin
𝑋𝑋𝑙𝑙,𝐷𝐷𝑙𝑙,𝐴𝐴𝑙𝑙,𝑊𝑊𝑙𝑙

 𝒞𝒞(𝐷𝐷𝑙𝑙 ,𝐷𝐷𝑙𝑙,𝐴𝐴𝑙𝑙,𝑊𝑊𝑙𝑙)

 𝒞𝒞(𝐷𝐷𝑙𝑙 ,𝐷𝐷𝑙𝑙 ,𝐴𝐴𝑙𝑙 ,𝑊𝑊𝑙𝑙) = ‖𝑌𝑌𝑙𝑙 − 𝐷𝐷𝑙𝑙𝐷𝐷𝑙𝑙‖22 + 𝛾𝛾�𝓧𝓧𝑙𝑙̇ − 𝑰𝑰𝐷𝐷𝑙𝑙�
2

2
+ 𝛼𝛼‖𝑄𝑄 − 𝐴𝐴𝑙𝑙𝐷𝐷𝑙𝑙‖22

+ 𝛽𝛽‖𝐻𝐻 −𝑊𝑊𝑙𝑙𝐷𝐷𝑙𝑙‖22
 (24)

As the number of features in the training set remains the same irrespective of the

feature descriptor type, 𝑄𝑄,𝐻𝐻 , which correlate between the features and their classes,

Approved for Public Release; Distribution Unlimited.
32

remain same. For a given query image 𝑞𝑞, the feature descriptor 𝑦𝑦𝑞𝑞𝑙𝑙 for feature type 𝑙𝑙 is

computed and the respective sparse code 𝒙𝒙𝑞𝑞𝑙𝑙 is obtained by solving,

argmin
𝒙𝒙𝑞𝑞𝑙𝑙

�𝒚𝒚𝑞𝑞𝑙𝑙 − 𝐷𝐷𝑙𝑙𝒙𝒙𝑞𝑞𝑙𝑙 �2
2

 s. t �𝒙𝒙𝑞𝑞𝑙𝑙 �0 ≤ 𝑡𝑡 (25)

The feature specific class label for the test image is given by

(ℓ�𝑥𝑥𝑞𝑞𝑙𝑙 � = 𝑖𝑖) = max
𝑖𝑖

((𝑊𝑊𝑙𝑙)𝑇𝑇𝒙𝒙𝑞𝑞𝑙𝑙) (26)

The class labels obtained from (26) may or may not be similar for all the feature types.

So it is necessary to determine the most relevant class for the query image. Once the

feature specific class labels are obtained, the next step is to determine which feature type

is more relevant for classification and determine the class as determined by the

nominated feature.

We keep the number of training features per class constant, which implies that the

entropy of a class is also constant. Thus maximizing the mutual information between a

feature and a class would mean minimizing the conditional entropy 𝐻𝐻(𝑖𝑖|𝒙𝒙). The class

conditional entropy can either be computed from the original feature or the sparse codes

obtained by solving (25). To account for the any loss of information that may have

incurred due to sparse coding of 𝑥𝑥𝑞𝑞𝑙𝑙 , we compare 𝐻𝐻�ℓ�𝑥𝑥𝑞𝑞𝑙𝑙 ��𝑦𝑦𝑞𝑞𝑙𝑙�𝐻𝐻�ℓ�𝑥𝑥𝑞𝑞𝑙𝑙 ��𝑥𝑥𝑞𝑞𝑙𝑙 � for all 𝑙𝑙 .

Thus the final classification result is given by the nominated feature type:

ℓ(𝑞𝑞) = min
𝑙𝑙
𝐻𝐻�ℓ�𝑥𝑥𝑞𝑞𝑙𝑙 ��𝑦𝑦𝑞𝑞𝑙𝑙�𝐻𝐻�ℓ�𝑥𝑥𝑞𝑞𝑙𝑙 ��𝑥𝑥𝑞𝑞𝑙𝑙 � (27)

4.4.2 Assessment of the developed methodologies

(sec. 4.5.2 from contract) The assessment for the two above mentioned methods are

described here.

A. We have conducted two experiments in conjunction with experiments 1 and 3. The

following experiments show the automatically computed weights for each algorithm

(self-nomination) for different feature-type configurations.

Experiment 4: For our experiments, we choose 30 image categories (see Figure 8 for

sample images) from the ImageNet data set [13]. For each category, we randomly select

250 images to form our experimental data set. The BoW histograms are only computed

within the bounded boxes for each image. The bin centers of histograms are obtained by

k-means algorithm (k=1000). For training, we employed a “one vs. all” scheme for each

Approved for Public Release; Distribution Unlimited.
33

object category. From each target category, we select 145 images for the training and 5

images from all the other 29 categories yielding a 145 vs. 145 training set. This scheme is

selected to avoid any bias in the learning towards the dominating class in the training

data. All the remaining images from each category are used for testing. We trained the

MKL algorithm individually for different combinations of the three types of features by

using the Gaussian kernel. We used 10 Gaussian kernel parameters {0.00002, 0.0002,

0.04, 1, 4, 6, 7, 9, 10 12} yielding 10xN kernels within the MKL model. First we trained

MKL by using the color histograms, the SIFT BoW histograms and the HOG BoW

histograms individually. Then we used pairs of these features for the training. Finally, we

used all three feature-types for training. Each trained MKL is applied on the test data.

The AUC values for each class were shown in Figure 8 for different combinations of

the feature-types. Table 6 shows that, on average, there is a gain in combining feature-

types as opposed to using them individually. The gain is maximal (%4) when the highest

average single feature-type AUC value is compared to the one of all three feature-types.

However, this is not necessarily true for each case (for example, see category 6 in Figure

9c). A comparison of all three plots in Figure 9 shows that the HOG (H) features

contribute to the AUC values the most on average.

The weights for each feature-type are summed over the 10 kernel parameters and the

results are shown in Table 2 for the case where N=3. These are the values signifying the

saliency of each feature type. Among all three, the HOG features are weighted the most

over the 30 categories (see the average values in Table 2).
Table 6: Kernel weights (βm, m=1,2,3) are shown for each category when the MKL is trained by
using all three feature-types.

Category: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S: 0.00 0.00 0.00 0.00 0.25 0.02 0.03 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.04

H: 0.75 0.70 0.84 0.00 0.44 0.06 0.91 0.36 0.65 1.00 0.41 0.60 0.47 0.38 0.96

C: 0.25 0.30 0.16 1.00 0.31 0.92 0.06 0.35 0.35 0.00 0.59 0.40 0.53 0.62 0.00

Category: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Ave.

S: 0.00 0.00 0.28 0.07 0.00 0.00 0.04 0.09 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.06

H: 0.87 1.00 0.72 0.88 1.00 0.66 0.95 0.15 0.91 0.71 0.56 0.20 0.94 0.18 0.38 0.62

C: 0.13 0.00 0.00 0.05 0.00 0.34 0.02 0.76 0.09 0.29 0.44 0.00 0.06 0.82 0.62 0.31

Approved for Public Release; Distribution Unlimited.
34

Experiment 5: This experiment is conducted by using the same dataset and the same

configuration of Experiment 1. In this experiment, we studied how the kernel weights are

assigned as the number of feature-types changes. For that, we first trained the algorithm

by using pairs of feature-types including Color&SIFT, Color&HOG and SIFT&HOG.

Then we also trained the algorithm by using all three feature-types. The weights are given

below (the highest values are highlighted).
Table 7: The classifier is trained by using Color (RGB) histograms and SIFT features.

Class: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Color: 0.9 0.8 1 1 0.7 0.9 0.3 0.8 0.8 0.7 0.9 0.5 0.8 0.8 0.2 0.7 0.9 0.1 0.3 0
SIFT: 0.1 0.2 0 0 0.3 0.1 0.7 0.2 0.2 0.3 0.1 0.5 0.2 0.2 0.8 0.3 0.1 0.9 0.7 1

Table 8: The classifier is trained by using Color (RGB) histograms and HOG features.

Class: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Color: 0.4 0.5 0.0 0.7 0.5 0.9 0.2 0.7 0.5 0.0 0.7 0.3 0.5 0.2 0.0 0.1 0.0 0.0 0.0 0.0
HOG: 0.6 0.5 1.0 0.3 0.5 0.1 0.8 0.3 0.5 1.0 0.3 0.7 0.5 0.8 1.0 0.9 1.0 1.0 1.0 1.0

Table 9: The classifier is trained by using SIFT and HOG features.

Class: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
SIFT: 0.2 0.2 0.0 0.0 0.2 0.7 0.5 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
HOG: 0.8 0.8 1.0 1.0 0.8 0.3 0.5 0.5 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8

Table 10: The classifier is trained by using all three feature-types.

Class: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
SIFT: 0.1 0.1 0.0 0.0 0.2 0.1 0.4 0.1 0.1 0.1 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
HOG: 0.6 0.4 0.9 0.3 0.4 0.1 0.4 0.2 0.3 0.8 0.3 0.5 0.5 0.8 1.0 0.9 1.0 1.0 1.0 0.8
Color: 0.3 0.6 0.1 0.7 0.4 0.9 0.2 0.7 0.5 0.0 0.7 0.3 0.5 0.2 0.0 0.1 0.0 0.0 0.0 0.0

The self-nominated weights for all feature-types are presented in Table 7, 8, 9 and in

Table 10 for each class. Table 7 lists the weights the feature-types between Color

histograms and SIFT features for each class (over 20 classes). As the highlighted values

indicate, color histograms we selected as the most discriminative feature-type for 15

classes when compared to the SIFT features. SIFT was weighted as more discriminative

for only the remaining 5 classes.

Table 8 compares color histograms to HOG features. In Table 8, the algorithm

selected HOG features to be the most discriminative feature-type for 12 classes when

Approved for Public Release; Distribution Unlimited.
35

HOG features are compared to the color histograms. Color histograms were more

discriminative for only 4 classes, when they are compared to HOG features. For the

remaining 4 classes, the algorithm equally weighted both color histograms and HOG

features.

Table 9 compares SIFT features to HOG features. In this comparison, HOG features

were selected for 17 classes, while SIFT was selected only for one class. For the

remaining two classes, both SIFT and HOG features were equally weighted.

Table 10 compares all three feature-types. In this case, SIFT features were selected

for only one class, HOG features were selected for 12 classes and color histograms were

selected for 5 classes as being the most discriminative feature-type. For the class 13,

both HOG and color histograms were equally selected (weighted).

Comparing these results to the individual AUC values given in Table 1, we can

conclude that, indeed the self-nomination algorithm can weight the most discriminative

feature-types on average.

B. We performed experiments on Caltech 101 dataset to assess the performance of the

mutual information based feature-nomination method. The results have been published

[36] in an IEEE conference on image processing.

Figure 14: Sample images from Caltech 101 dataset

Figure 14 shows some sample images from Caltech 101 dataset.

Experiment 6: Experiments were performed using the Caltech101 dataset, which

contains 101 different categories with 9,144 images. The number of images in a class

varies from 31 to 800. We choose randomly selected 28 images per class to train the

Approved for Public Release; Distribution Unlimited.
36

classifier for each of SIFT, HOG, LBP and HSV color histograms. The sparse codes, the

training dictionary and the classifier parameter were obtained using these four features.

Figure 15: The figure shows the confusion matrix (the diagonal entries show the classification
accuracy when a test image from the classes along the row is classified correctly) for 16 sample
classes which have classification accuracy over 80% using the feature the feature nomination scheme.

In Figure 15, we show accuracy percentage (number of correct class predictions/number

of test images in that class) using feature descriptor voting scheme for 16 sample classes

which have accuracy more that 80%. About 10% of the classes for the dataset have 100%

accuracy and 12.7% classes have more than 90% accuracy. In this figure, the rows

correspond to the category from which the test image belongs and each column

corresponds to the training categories. There are total 101 categories in the dataset and

we are comparing 16 of these classes, other classes remain hidden. The diagonal values in

Figure 15 correspond to the accuracies to being correctly classified. The off-diagonal

values correspond to the false positives i.e., a test image belongs to one class, but is mis-

classified as another class.

Approved for Public Release; Distribution Unlimited.
37

SN: 1
S=1

H=0.8
L=0.92
C=0.08

S+H=0.8
H+L=0.86
L+S=0.96

S+L+H=0.9

SN: 0.19
S=0.12
H=0.18
L=0.18
C=0.12

S+H=0.14
H+L=0.18
L+S=0.15

S+L+H=0.2

SN: 0.33
S=0.33
H=0.33

L=0
C=0

S+H=0.3
H+L=0.167
L+S=0.167
S+L+H=0.2

SN: 1
S=1

H=0.91
L=0.92

C=0
S+H=0.86
H+L=91

L+S=0.95
S+L+H=0.9

SN: 0.53
S=0.4

H=0.27
L=0.33
C=0.14

S+H=0.33
H+L=0.30
L+S=0.4

S+L+H=0.4

SN: 0.25
S=0
H=0

L=0.5
C=0.25
S+H=0

H+L=0.25
L+S=0.25

S+L+H=0.2

SN: 1
S=1

H=0.88
L=0.76
C=0.52

S+H=0.84
H+L=0.82
L+S=0.8

S+L+H=0.8

SN: 0.48
S=0.41
H=0.40
L=0.20
C=0.17

S+H=0.4
H+L=0.31
L+S=0.34

S+L+H=0.4

SN: 0.20
S=0.18
H=0.25
L=0.09
C=0.03

S+H=0.2
H+L=0.177
L+S=0.14

S+L+H=0.1

SN: 0.25
S=0.2
H=0.2
L=0.11
C=0.08

S+H=0.2
H+L=0.16
L+S=0.17

S+L+H=0.2

SN: 0.46
S=0.46
H=0.38
L=0.23

C=0
S+H=0.37

H+L=0.307
L+S=0.34

S+L+H=0.4

SN: 1
S=1

H=0.95
L=0.73
C=0.52

S+H=0.87
H+L=0.84
L+S=0.86

S+L+H=0.8

SN: 0.48
S=0.44
H=0.48
L=0.28
C=0.08

S+H=0.28
H+L=0.3
L+S=0.2

S+L+H=0.3

SN: 0.4
S=0.2
H=0.4
L=0.2
C=0.2

S+H=0.28
H+L=0.3
L+S=0.2

S+L+H=0.3

SN: 0.7
S=0.78
H=0.69
L=0.53
C=0.09

S+H=0.66
H+L=0.61
L+S=0.65

S+L+H=0.7

SN: 0.85
S=1

H=0.83
L=0.78
C=0.14

S+H=0.81
H+L=0.81
L+S=0.89

S+L+H=0.9
Figure 16: Figure shows the classification accuracies using SIFT (S), HOG (H), LBP (L), HSV color
histogram (C) and mutual information based self-nomination (SN) algorithm. We also show
comparison when a weighted combination of the features used is taken using the same dictionary
learning based classifier.

Figure 16 shows the comparison of self-nomination algorithm where it chooses the

appropriate feature for classification with the features when used as a single descriptor.

For all the experiment we use the dictionary learning based classifier. A comparison is

also shown when a weighted average of the features is computed for classification

purpose. Here the weights are selected manually.

Approved for Public Release; Distribution Unlimited.
38

5 CONCLUSIONS

In this work, we presented two proto-type approaches for our above-mentioned self-

nomination approach. We studied various feature types and compared their results in

various experiments in the results section. Our attached code shows various

5.1 A Conclusive discussion and conclusion on Experiments 4 and 5

While MKL is successful in weighting the salient feature-types on average, for the

categories 2 and 6, it failed on choosing the salient feature-types. For category 2, MKL

weighted the HOG and color features as being the most salient feature-types. However,

SIFT features yielded the highest AUC values for category 2 (See Figure 9a or Figure

9c). Similarly for the 6th category, MKL weighted the color histograms being the most

salient type. However, color histograms based feature-type provides the least

performance by itself in general (see Figure 9). We changed the order of the used

features-types in (23) for these cases to see if ordering matters and observed that

changing the order did not change the results.

A comparison of the Table 2 and Figure 9states that, although the MKL algorithm

failed to assign a stronger weight to the most salient feature-type correctly for categories

2 and 6, in all other cases it found the salient features yielding the highest (or near

highest) AUC values.

In our preliminary experiments we also noticed that using unequal numbers of samples

from each class, yields biasing towards the class that includes the most samples.

Avoiding such bias is possible by selecting equal number of samples from each class and

we included the software (code) performing that task during the generation of the training

data.

5.2 A Conclusive discussion and conclusion on Experiment 6

As can be seen from the Figure 16, while the proposed dictionary learning based

algorithm may not give the maximum accuracy in some categories, for other categories, it

either chooses the feature that gives the maximum accuracy or chooses different features

to provide higher accuracy. For test images belonging to the same class, the self-

Approved for Public Release; Distribution Unlimited.
39

nomination algorithm may not choose the same feature type, but nominates the feature,

which is most suitable for that image based on its contents.

Approved for Public Release; Distribution Unlimited.
40

6 REFERENCES

[1] Singhai, Nidhi, and Shishir K. Shandilya. "A survey on: content based image
retrieval systems." International Journal of Computer Applications 4, no. 4
(2010): 22-26.

[2] Zhang, He, and Sha Zijun. "Commerce Image Retrieval with Combination of
Descriptors." International Journal of Computer Science & Network Security 13,
no. 6 (2013).

[3] Yeh, Yi-Ren, Ting-Chu Lin, Yung-Yu Chung, and Y-CF Wang. "A novel
multiple kernel learning framework for heterogeneous feature fusion and variable
selection." Multimedia, IEEE Transactions on 14, no. 3 (2012): 563-574.

[4] Lowe, David G. "Distinctive image features from scale-invariant keypoints."
International journal of computer vision, 60, no. 2: 91-110, 2004.

[5] Liu, Ce, Yuen Jenny, Torralba Antonio, Sivic Josef, and Freeman William T..
"SIFT flow: dense correspondence across different scenes." In Computer Vision–
ECCV 2008, pp. 28-42. Springer Berlin Heidelberg, 2008.

[6] Dalal, Navneet, and Triggs Bill. “Histograms of oriented gradients for human
detection.” In Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, vol. 1, pp. 886-893. IEEE, 2005.

[7] Manjunath, Bangalore S., and Ma Wei-Ying. "Texture features for browsing and
retrieval of image data." Pattern Analysis and Machine Intelligence, IEEE
Transactions on 18, no. 8 (1996): 837-842.

[8] von Hundelshausen, Felix, and Sukthankar Rahul. "D-Nets: Beyond patch-based
image descriptors." In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pp. 2941-2948. IEEE, 2012.

[9] Hauagge, Daniel Cabrini, and Snavely Noah. "Image matching using local
symmetry features." In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pp. 206-213. IEEE, 2012.

[10] Wang, Xiaoyu, Han Tony X., and Yan Shuicheng, “An HOG-LBP human
detector with partial occlusion handling.” In Computer Vision, 2009 IEEE 12th
International Conference on, pp. 32-39. IEEE, 2009.

[11] Nilsback, M-E., and Zisserman Andrew. “Automated flower classification over a
large number of classes.” In Computer Vision, Graphics & Image Processing,
2008. ICVGIP'08. Sixth Indian Conference on, pp. 722-729. IEEE, 2008.

[12] Lanckriet G. R. G., Cristianini N., Bartlett P., Ghaoui L. E., Jordan M. I.,
“Learning the Kernel Matrix with Semidefinite Programming”, The Journal of
Machine Learning Research, 5, p.27-72, 12/1/2004.

[13] Deng, Jia, Dong W, Socher R, Li L.J., Li K., and Fei-Fei L. "Imagenet: A large-
scale hierarchical image database." In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pp. 248-255. IEEE, 2009.

[14] Li Bing and Acton Scott, "Active Contour External Force Using Vector Field
Convolution for Image Segmentation," IEEE, Trans. on Image Procs., 2007.

[15] Li Bing and Acton Scott T., "Automatic Active Model Initialization via Poisson
Inverse Gradient," IEEE,Trans. on Image Procs., 2008.

Approved for Public Release; Distribution Unlimited.
41

[16] Dunn D., Higgins W.E., and Wakeley J, "Texture segmentation using 2-D Gabor
elementary functions ," IEEE PAMI, vol. 16, pp. 130-149 , 1994.

[17] Ma Y. and Manjunath B.S., "Edge flow: a framework of boundary detection and
image segmentation," in Computer Vision and Pattern Recognition, 1997.

[18] Acton Scott T., "Fast Algorithms for Area Morphology," Digital Signal
Processing, vol. 11, no. 3, pp. 187-203(17), July 2001.

[19] Ojala T, Pietikainen M, and Maenpaa T, "Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns ," vol. 24, no. 7, pp. 971 -
987, 2002.

[20] Daugman John, "Complete Discrete 2-D Gabor Transforms by Neural Networks
for Image Analysis and Compression ," IEEE Trans on Acoustics, Speech, and
Signal Processing., vol. 36, no. 7, pp. 1169–1179, July 1988.

[21] Zahn C.T. and Roskies R.Z., "Fourier descriptors for plane close curves ," IEEE
Trans. Computers, vol. C-21, pp. 269-281, March 1972.

[22] Persoon Eric and King-Sun Fu., "Shape discrimination using Fourier
descriptors," Systems, Man and Cybernetics, IEEE Transactions on , vol. 7.3, pp.
170-179, 1977.

[23] Fei-Fei, L.; Perona, P., "A Bayesian hierarchical model for learning natural scene
categories," Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on , vol.2, no., pp.524,531 vol. 2, 20-25 June 2005.

[24] Jain, Anil K., and Richard C. Dubes. Algorithms for clustering data. Prentice-
Hall, Inc., 1988.

[25] Jaakkola, T., Haussler, D. “Exploiting generative models in discriminative
classifiers”, In: NIPS, 1999.

[26] Lazebnik S., Schmid C., and Ponce J., "Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories," in CVPR, 2006.

[27] Schölkopf, Bernhard, Ralf Herbrich, and Alex J. Smola. "A generalized
representer theorem." In Computational learning theory, pp. 416-426. Springer
Berlin Heidelberg, 2001.

[28] Vapnik V., “Statistical Learning Theory”, John Wiley and Sons, Inc., New York,
1998.

[29] Ozer S., Chen C. H., Cirpan H. A., "A set of new Chebyshev kernel functions for
support vector machine pattern classification", Pattern Recognition 44, no. 7:
1435-1447, 2011.

[30] Lanckriet G. R. G., Cristianini N., Bartlett P., Ghaoui L. E., Jordan M. I.,
“Learning the Kernel Matrix with Semidefinite Programming”, The Journal of
Machine Learning Research, 5, p.27-72, 12/1/2004.

Approved for Public Release; Distribution Unlimited.
42

[31] Bucak, S., Rong Jin, and A. Jain. "Multiple Kernel Learning for Visual Object
Recognition: A Review." IEEE Trans. on Pattern Analysis and Machine Analysis,
2013.

[32] Rakotomamonjy A., Bach F., Canu S., Y. Grandvalet, "SimpleMKL", Journal of
Machine Learning Research 9 (2008): 2491-2521.

[33] Jiang Z., Lin Z., and Davis L.S., "Label Consistent K-SVD: Learning a
Discriminative Dictionary for Recognition," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 11, pp. 2651 - 2664, 2013.

[34] Zhang Q., and Li B., "Discriminative k-svd for dictionary learning in face
recognition," 2010, IEEE Conference on Computer Vision and Pattern
Recognition.

[35] Elad M. and Aharon M., "Image denoising via sparse and redundant
representations over learned dictionaries," Image Processing, IEEE Transactions
on, vol. 15(12), pp. 3736-3745., 2006.

[36] Sarkar R., Skadron K., and Acton S.T., "A Meta Algorithm for classification by
feature nomination," in ICIP, 2014.

[37] Vasconcelos M. and Vasconcelos N., "Natural image statistics and low-
complexity feature selection," Pattern Analysis and Machine Intelligence, vol.
31.2, pp. 228-244, 2009.

[38] Z. Wang, Q. Zhao, D. Chu, F. Zhao, and L. J. Guibas, "Select informative
features for recognition," in ICIP, 2011.

[39] Kwak N. and Choi C.H., "Input feature selection by mutual information based on
Parzen window," Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 24(12), pp. 1667-1671, 2002.

[40] Peng H., Long F., and Ding C., "Feature selection based on mutual information
criteria of max-dependency, max-relevance, and min-redundancy," IEEE
Transactions on, PAMI, vol. 27(8), pp. 1226-1238., 2005.

[41] Yang, Jingjing, Yuanning Li, Yonghong Tian, Lingyu Duan, and Wen Gao.
"Group-sensitive multiple kernel learning for object categorization." In Computer
Vision, 2009 IEEE 12th International Conference on, pp. 436-443. IEEE, 2009.

[42] François Fleuret, "Fast binary feature selection with conditional mutual
information," The Journal of Machine Learning Research , vol. 5, pp. 1531-1555.,
2004.

[43] Fei-Fei L., Fergus R., and Perona P., "Learning generative visual models from
few trainig samples an incremental Bayesian approach tested on 101 object
categories," in CVPR, Workshop on Generative-Model based vision, 2004.

[44] Griffin Gregory, Alex Holub, and Pietro Perona. "Caltech-256 object category
dataset." (2007).

Approved for Public Release; Distribution Unlimited.
43

[45] Everingham, Mark, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. "The pascal visual object classes (voc) challenge."
International journal of computer vision 88, no. 2 (2010): 303-338.

[46] Iqbal, Qasim, and Jake K. Aggarwal. "Retrieval by classification of images
containing large manmade objects using perceptual grouping." Pattern recognition
35, no. 7 (2002): 1463-1479.

[47] Felzenszwalb, Pedro F., Ross B. Girshick, David McAllester, and Deva
Ramanan. “Object detection with discriminatively trained part-based models.”
Pattern Analysis and Machine Intelligence, IEEE Transactions on 32, no. 9 (2010):
1627-1645.

[48] Vedaldi A. and Fulkerson B., “VLFeat: An Open and Portable Library of
computer vision algorithms”, 2008, www.vlfeat.org/.

[49] Vedaldi, Andrea, Varun Gulshan, Manik Varma, and Andrew Zisserman.

"Multiple kernels for object detection." In Computer Vision, 2009 IEEE 12th

International Conference on, pp. 606-613. IEEE, 2009.

Approved for Public Release; Distribution Unlimited.
44

APPENDIX

In this appendix, we cover the rest of the contract items that are not addressed in the main

text.

A.1 Documentation

(sec. 4.5.6 from contract): The documentation and details of the implementation of the

two methods stated above are given here

A. In our implementation of multiple kernel learning based self-nomination, we include

third party (off-the-shelf) libraries such as VLFeat [48] and SimpleMKL [32]. Most of

the algorithms presented in this report are implemented on the Matlab platform.

FeatureNominationwithMKL: This Matlab function splits the input data into training

and testing, it trains the classifier and returns the classification results and self-nominated

weights. It computes accuracy for both positive (+1) and negative (-1) classes separately

from the test data. It forms the training data from the inputdata AllData based on the

second and third parameters outclasssamplenumber and currentClass. The data is split

into positive and negative samples based on the CurrentClass value. Then from each

negative class, a total of outclasssamplenumber samples are taken. The algorithm trains

the classifier by taking equal number of training samples from both positive and negative

classes. FeatureSet is the total number of feature-types included in AllData.

[positive_classpercentage, negative_classpercentage, beta ,ypred, ytest

]=FeatureNominationwithMKL(AllData, outclasssamplenumber,currentClass,FeatureSet)

The returned values are positive_classpercentage, negative_classpercentage, beta,

ypred, ytest. Among those, beta values are the self-nomination weights (between 0 and 1)

signifying the relevant importance of each feature-type, ypred is the f(x) value estimated

by using Eq. (5) and ytest is the true labels for the testing data; positive_classpercentage

is the accuracy value for the positive samples in the test data (given as a percentage);

negative_classpercentage is the accuracy value for the negative samples in the test data

(given as percentage).

B. We implemented our algorithm in Matlab platform. Our implementation includes third

party libraries like VLFeat [48] for feature computation, spatial pyramid calculation [26]

Approved for Public Release; Distribution Unlimited.
45

and K-SVD algorithm for dictionary learning [35]. These algorithms are easily available

from the respective websites.

Functions for feature nomination by maximizing mutual information:

1) trainDictionary: This Matlab function computes the different features, computes

spatial pyramid features, learns the discriminative dictionary for each of the feature types

and computes the respective sparse codes.

[trainspatialpyramidFeature, trainDictionary, trainSparsecodes, classifierParam] =

trainDictionary(traindata, classInfo, codeInfo)

Input: traindata, input the training class filenames as a matfile

 classInfo, input the parameter H as in (24)

 codeInfo, parameter Q in equation (24)

Output: spatialpyramidFeature, contains the spatial pyramid feature of the training data.

 trainDictionary, the learned dictionary for the training data.

 trainSparsecode, the sparse codes for the training data

 classifierParam, the classifier parameter W for all the features

An option to add more feature types is also available with the code.

2) testMetaAlgorithm: This algorithm computes the testing part where the input is one

or a stream of test images and the output is the corresponding class for the self-

nomination algorithm. Computing the features for the test data, computing the sparse

code for the test data, evaluation of the conditional entropy for each of the features are

incorporated within he following function

[classlabel] = testMetaAlgorithm(testdata, trainspatialpyramidFeature, trainDictionary,

trainSparsecodes, classifierParam)

Input: testdata, contain the test image file names in a matfile

trainspatialpyramidFeature, the features computed from the training data

trainDictionary, the dictionary computed from the training data

trainSparsecodes, the sparse code computed from the training data

classifierParam, the classifier parameter W output from the trainDictionary.m

Output: classlabel, the final class label of the test data

Approved for Public Release; Distribution Unlimited.
46

In addition to the above-mentioned functions other functions are provided to assess the

accuracy of the algorithm, to compute the classInfo, codeInfo. Details on each of these

functions are available with the code.

A.2 Integrated System (sec. 4.6 from contract)

We have developed an integrated system that first reads all the images from a data sets,

computes different feature types, computes bag of words histograms and then selects the

most appropriate feature-type (algorithm) for a given category. At the same time, the

system also makes a decision via the built-in SVM classifier. Our integrated system

works on Matlab environment.

A.2.1 Assembled software system

(sec. 4.6.1 from contract): An assembled software system has been developed on Matlab

platform and it is available on our website:

http://viva-lab.ece.virginia.edu/viva/doc/research_vmrdarpa.html .

A.2.2 Assess the integrated software system

(sec. 4.6.2 from contract): Our integrated system uses the individual functions used in the

above-mentioned sections. Therefore it yields the same results as the results presented in

sections 2.2 and 2.5. Please refer to those sections for the integrated system’s

performance.

A.2.3 Documentation

(sec. 4.6.3 from contract): Integrated system uses the same functions as the sections 2.5

and 2.2. Therefore, please refer to those sections for the documentation.

A.3 Reports (sec. 4.7 from contract)

A.3.1 Progress towards accomplishment

(sec. 4.7.1 from contract): We have reported the progress toward the accomplishment of

the contract at VMR meetings. In particular we have attended the quarterly PI meetings

and submitted interim reports.

Approved for Public Release; Distribution Unlimited.
47

A.3.2 Continually determine the status of funding

(sec. 4.7.2 from contract): We have provided the monthly invoicing.

A.3.3 Conduct presentations at such times and places designated in the contract
schedule.

(sec. 4.7.3 from contract): We have regularly attended VMR meetings and presented the

summary and accomplishments for the contract.

A.3.4 Document all technical work accomplished and information gained.

(sec. 4.7.4 from contract): In this work, we have presented and developed various

algorithms and implementations. These include segmentation algorithms, an analysis to

determine the value of various CBIR techniques, and an algorithm to select the important

and suitable algorithms.

Our findings in this work are listed as follows:

1) While the manual initialization based segmentation can isolate the object of

interest more accurately, the segmentation result is partially dependent on the

initialization. A more proximal initialization yields an improved result. Since

manual initialization of the images found in the field is not desirable, automatic

initialization for segmentation is more appropriate for this application. The

available (semantic) active contour and area morphology based segmentation

algorithms work satisfactorily on most of the images. However their performance

reduces in certain conditions like increase in background clutter, severe

illumination variation on the object, smaller aspect ratio of the object in

comparison to the size of the image etc.

2) U and L junctions help increasing the building recognition. However, since there

are many other objects have U and L junctions frequently (such as tree), their

performance reduces in large image datasets containing many different object

types.

3) While the most accepted and commonly used feature-types are SIFT and HOG, in

this work we noticed that while both SIFT and HOG features are alike, each

captures different information and each works better for different classification

purposes. In particular, SIFT features can capture the information of a scene better

Approved for Public Release; Distribution Unlimited.
48

than HOG features can. HOG features capture the pose (the structure and viewing

angle of an object) of objects better than SIFT features can when they are both

represented with K-means based BoW histograms in a classifier.

4) Multiple kernel learning and Dictionary learning with maximizing mutual

information based approaches can be employed to select the salient feature-types

(algorithms) among a pool of algorithms. While in some individual cases they

may not select the most optimal feature-type, on average, these approaches

perform well on selecting the salient feature-types.

A.3.5 Collaboration

(sec. 4.7.5 from contract): We have collaborated with different participants on planning,

designing and testing the applications. In particular we have had collaborations with our

colleagues from Univ. of Missouri, Mississippi State University and Michigan Tech. In

addition, we have also collaborated with Mr. Harpreet Sawhney (from SRI) and with Dr.

Reuven Meth (from Leidos).

A.4 Software (sec. 4.8 from contract)

All the developed software is available in the attached CDROM (media).

A.4.1 User’s Guide

(sec. 4.8.1 from contract): The source code for our developed software is available in the

attached CDROM (media).

Each individual file includes its own description in it to describe how to use the function

and its purpose.

Approved for Public Release; Distribution Unlimited.
49

	LIST OF FIGURES
	LIST OF TABLES
	1 SUMMARY
	2 INTRODUCTION
	3 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 Segmentation techniques
	3.2 Features
	3.3 Compact feature representation
	3.4 Classifiers
	3.5 Data sets
	3.6 Assumptions

	4 RESULTS AND DISCUSSION
	4.1 Segmentation and User Interface (sec. 4.1 from contract)
	4.1.1 Develop and implement a VMR approach that applies segmentation and classification in order to identify which subsequent object recognition algorithms to use
	4.1.2 Develop working software including plug-and-play interfaces
	4.1.3 Demonstrate a VMR approach that applies segmentation and classification. Document algorithm, software, and results of demonstration
	4.1.4 CBIR as an Ingredient in Recognition (sec. 4.2 from contract)
	4.1.5 Develop and implement software to identify faces via a generalized CBIR method
	4.1.6 The value of CBIR as an ingredient in classification
	4.1.7 Documentation and results

	4.2 Automatic Building Recognition (sec. 4.3 from contract)
	4.2.1 Techniques for building recognition
	4.2.2 Documentation, Results and Assessment of the presented techniques on building recognition

	4.3 CBIR as a “backstop” algorithm for recognition (sec. 4.4 from contract)
	4.4 Viability of Self-nomination (sec. 4.5 from contract)
	4.4.1 Investigate and develop methodology for a “self-nomination” paradigm in which a large pool of algorithms self-score their suitability and implement in software.
	4.4.2 Assessment of the developed methodologies

	5 CONCLUSIONS
	5.1 A Conclusive discussion and conclusion on Experiments 4 and 5
	5.2 A Conclusive discussion and conclusion on Experiment 6

	6 REFERENCES
	APPENDIX
	A.1 Documentation
	A.2 Integrated System (sec. 4.6 from contract)
	A.2.1 Assembled software system
	A.2.2 Assess the integrated software system
	A.2.3 Documentation

	A.3 Reports (sec. 4.7 from contract)
	A.3.1 Progress towards accomplishment
	A.3.2 Continually determine the status of funding
	A.3.3 Conduct presentations at such times and places designated in the contract schedule.
	A.3.4 Document all technical work accomplished and information gained.
	A.3.5 Collaboration

	A.4 Software (sec. 4.8 from contract)
	A.4.1 User’s Guide

